Bank Liquidity and the Cost of Debt

Sam Miller and Rhiannon Sowerbutts

Columbia and TCH Liquidity Conference

February 2018

• Little research on link between bank liquidity and funding costs.

- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements' "M-M" offsets.
- There's some opportunity cost for firms liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements' "M-M" offsets.
- There's some opportunity cost for firms liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements' "M-M" offsets.
- There's some opportunity cost for firms liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements' "M-M" offsets.
- There's some opportunity cost for firms liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements' "M-M" offsets.
- There's some opportunity cost for firms liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.

• Three periods: t=0, 1, 2

- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. E = 1 D.

- Three periods: t=0, 1, 2
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. E = 1 D.

- Three periods: t=0, 1, 2
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. E = 1 D.

- Three periods: t=0, 1, 2
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. E = 1 D.

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield *R* in period 2.
- The bank can repo loans to raise up to $\theta R(1-c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield R in period 2.
- The bank can repo loans to raise up to $\theta R(1-c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield *R* in period 2.
- The bank can repo loans to raise up to $\theta R(1-c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield *R* in period 2.
- The bank can repo loans to raise up to $\theta R(1-c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.

The model set up - period 0

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
- Investors have outside option utility U > 1.
- The bank chooses $r_D > U$ to satisfy a participation constraint.

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
- Investors have outside option utility U > 1.
- The bank chooses $r_D > U$ to satisfy a participation constraint.

Action	Bank fails	Bank Survives
Withdraw in period 1	1	1
Don't withdraw	0	r _D

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
- Investors have outside option utility U > 1.
- The bank chooses $r_D > U$ to satisfy a participation constraint.

Action	Bank fails	Bank Survives
Withdraw in period 1	1	1
Don't withdraw	0	r _D

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
- Investors have outside option utility U > 1.
- The bank chooses $r_D > U$ to satisfy a participation constraint.

Action	Bank fails	Bank Survives
Withdraw in period 1	1	1
Don't withdraw	0	r _D

- In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.
- Some proportion of investors $W \in [0, 1]$ decide whether to withdraw based on their signal
- The bank will fail in period 1 if $\theta R(1-c) + c < WD$.
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.

- In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.
- Some proportion of investors $W \in [0, 1]$ decide whether to withdraw based on their signal
- The bank will fail in period 1 if $\theta R(1-c) + c < WD$.
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.

- In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.
- Some proportion of investors W ∈ [0, 1] decide whether to withdraw based on their signal
- The bank will fail in period 1 if $\theta R(1-c) + c < WD$.
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.

- In period 1, each investor receive a private signal x_i = R + e_i, where e_i is N(0, σ²).
- Some proportion of investors W ∈ [0, 1] decide whether to withdraw based on their signal
- The bank will fail in period 1 if $\theta R(1-c) + c < WD$.
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.

- In period 1, each investor receive a private signal x_i = R + e_i, where e_i is N(0, σ²).
- Some proportion of investors W ∈ [0, 1] decide whether to withdraw based on their signal
- The bank will fail in period 1 if $\theta R(1-c) + c < WD$.
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.

- Find the optimal run strategy for investors, given the bank's choices of c and r_D .
- Given the run strategy, find the minimum r_D in period 0 necessary to participate.
- Given r_D and the investor's run strategy, find the bank's optimal cash choice.

- Find the optimal run strategy for investors, given the bank's choices of *c* and *r_D*.
- Given the run strategy, find the minimum r_D in period 0 necessary to participate.
- Given r_D and the investor's run strategy, find the bank's optimal cash choice.

- Find the optimal run strategy for investors, given the bank's choices of c and r_D .
- Given the run strategy, find the minimum r_D in period 0 necessary to participate.
- Given r_D and the investor's run strategy, find the bank's optimal cash choice.

- Find the optimal run strategy for investors, given the bank's choices of *c* and *r_D*.
- Given the run strategy, find the minimum r_D in period 0 necessary to participate.
- Given r_D and the investor's run strategy, find the bank's optimal cash choice.

Equilibrium consists of bank choice c, r_D and investor strategy.

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1-c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1-c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1-c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point \mathbb{R}^0 such that $\theta \mathbb{R}^0(1-c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1-c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1-c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1-c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1-c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1-c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1-c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.

- Unique equilibrium "switching point" *R**: investors run if they receive signals below and vice versa.
- The frequency of bank runs is given by $P(R < R^*)$.
- Generally we have $R^* > R_0$ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.

- Unique equilibrium "switching point" *R**: investors run if they receive signals below and vice versa.
- The frequency of bank runs is given by $P(R < R^*)$.
- Generally we have $R^* > R_0$ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.

- Unique equilibrium "switching point" *R**: investors run if they receive signals below and vice versa.
- The frequency of bank runs is given by $P(R < R^*)$.
- Generally we have R* > R₀ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.

- We have a unique equilibrium "switching point" *R**: investors run if they receive signals below and vice versa.
- The frequency of bank runs is given by $P(R < R^*)$.
- Holding more cash reduces R^* and the frequency of bank runs.

Equilibrium funding cost

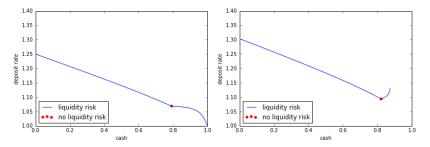
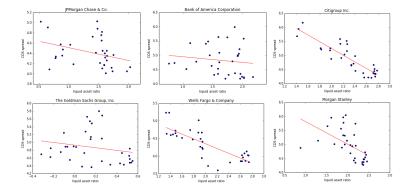


Figure: Well capitalised bank

Figure: Badly capitalised bank


Empirical specification

We want to test our model's prediction that funding costs decline with cash choice.

cost of funding_{*it*} =
$$\alpha_i + \beta_1 \frac{\text{equity}}{\text{total assets}_{it}} + \beta_2 \frac{\text{liquid assets}}{\text{total assets}_{it}} + \beta_3 \frac{\text{short term debt}}{\text{total assets}_{it}} + \gamma Z_t + \epsilon_{it}$$
 (1)

- Data in logs
- Balance sheet data: Fed FRY9C disclosures
- Controls Z_t for VIX index and US Treasury yield
- CDS spreads: Bloomberg
- Time periods: quarterly data 2009-2016
- 6 firms: JPMorgan, Goldman, Morgan Stanley, Bank of America, Citigroup, Wells Fargo

Correlations

Initial results

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
liq asset ratio -0.465** -0.389*** -0.243*** (-3.086) (-4.251) (-4.276) leverage ratio -1.813*** -1.115*** (-4.947) (-6.007) ST debt ratio 0.0398 0.0130 (0.915) (0.609)
(-3.086) (-4.251) (-4.276) leverage ratio -1.813*** -1.115*** (-4.947) (-6.007) ST debt ratio 0.0398 0.0130 (0.915) (0.609)
(-3.086) (-4.251) (-4.276) leverage ratio -1.813*** -1.115*** (-4.947) (-6.007) ST debt ratio 0.0398 0.0130 (0.915) (0.609)
leverage ratio -1.813*** -1.115*** (-4.947) (-6.007) ST debt ratio 0.0398 0.0130 (0.915) (0.609)
(-4.947) (-6.007) ST debt ratio 0.0398 0.0130 (0.915) (0.609)
ST debt ratio 0.0398 0.0130 (0.915) (0.609)
(0.915) (0.609)
Constant 5.178*** 8.704*** 6.921***
(34.47) (11.80) (14.15)
Observations 198 198 198
R-squared 0.181 0.301 0.706
Number of firmid 6 6 6
Fixed Effects YES YES YES
Controls NO NO YES
Robust t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

• 1% change in liquidity associated with .24% change in CDS.

- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that's a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.

- 1% change in liquidity associated with .24% change in CDS.
- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that's a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.

- 1% change in liquidity associated with .24% change in CDS.
- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that's a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.

- 1% change in liquidity associated with .24% change in CDS.
- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that's a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.

Robust to:

• Dropping each year out the sample

- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags

Robust to:

- Dropping each year out the sample
- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags

Robust to:

- Dropping each year out the sample
- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags

Summary and further work

• Policy question: social cost of higher liquidity requirements?

- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only need more widespread liquidity disclosures or different measure of funding costs.

Summary and further work

- Policy question: social cost of higher liquidity requirements?
- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only need more widespread liquidity disclosures or different measure of funding costs.

- Policy question: social cost of higher liquidity requirements?
- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only need more widespread liquidity disclosures or different measure of funding costs.

- Policy question: social cost of higher liquidity requirements?
- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only need more widespread liquidity disclosures or different measure of funding costs.

- Policy question: social cost of higher liquidity requirements?
- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only need more widespread liquidity disclosures or different measure of funding costs.