					Аррениіх
6	BANK OF ENGLAND	THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE	ETH zürich	NORGES BANK	

Taking regulation seriously: Fire sales under solvency and liquidity constraints

Jamie Coen^{1,2}, Caterina Lepore² and Eric Schaanning^{3,4} London School of Economics¹, Bank of England², ETH Zurich³, Norges Bank⁴

Columbia University NYC, February 2018

	Model	Data	Results	Conclusions	Appendix
D: I :					

Disclaimer

The views expressed are those of the authors only and do not necessarily reflect those of the Bank of England or Norges Bank.

Model	Data	Results	Conclusions	Appendix

3 Data

4 Results

Asset shock: variants of 2017 stress test Funding shock Asset and Funding shocks

5 Conclusions

6 Appendix

Introduction	Model	Data	Results	Conclusions	Appendix
Motivatio	on				

"During the early 'liquidity phase' of the financial crisis that began in 2007, many credit institutions, despite maintaining adequate capital levels, experienced significant difficulties because they had failed to manage their liquidity risk prudently... (Such) credit institutions were then forced to liquidate assets in a fire-sale which created a self-reinforcing downward price spiral and lack of market confidence triggering a solvency crisis."

(European Commission, 2015)

Introduction	Model	Data	Results	Conclusions	Appendix
NA					

Motivation

- Liquidity issues during the crisis
- Multiple regulatory constraints
- Macroprudential stress tests

Introduction	Model	Data	Results	Conclusions	Appendix

Motivation

- Liquidity issues during the crisis
- Multiple regulatory constraints
- Macroprudential stress tests
- Objectives:
 - Build a quantitative model of fire sales to assess the interaction between liquidity and solvency constraints that banks simultaneously face.
 - Which types of financial shocks and regulatory requirements combine to produce fire sales?
 - How do banks optimally liquidate their portfolios when they are forced to do so?

Literature review

• Fire-sale models:

[Greenwood et al., 2015], [Cont and Schaanning, 2017], [Duarte and Eisenbach, 2013]

• Constraints and optimal deleveraging:

[Cecchetti and Kashyap, 2016], [Braouezec and Wagalath, 2016]

• Liquidity:

[Hellwig, 2009], [Gorton and Metrick, 2012], [Pierret, 2015] , [Acharya and Merrouche, 2012]

• Macro-stress tests:

[Dees and Henry, 2017], [Bank of England, 2017], [Bardoscia et al., 2017], [Fique, 2017], [Puhr and Schmitz, 2014], [Calimani et al., 2017]

Introduction	Model	Data	Results	Conclusions	Appendix

Model overview

Bank balance sheets

- Marketable securities $M_{i,k}$, k = 1...310 and i = 1...7Bonds and equity holdings that are available for sale and suffer a price impact.
- Other assets $O_{i,k}$, k = 1, 2: loans, intangible goods, and off-balance sheet items, which are **not** available for deleveraging.
- **Cash** or cash-like assets $C_{i,k}$, k = 1, 2.

Bank balance sheets

- Marketable securities $M_{i,k}$, k = 1...310 and i = 1...7Bonds and equity holdings that are available for sale and suffer a price impact.
- Other assets $O_{i,k}$, k = 1, 2: loans, intangible goods, and off-balance sheet items, which are **not** available for deleveraging.
- **Cash** or cash-like assets $C_{i,k}$, k = 1, 2.
- Liabilities $L_{i,k}$, k = 1...12. These include classic retail customer deposits, institutional deposits, short-term whole-sale funding, and issued debt.
- Capital E_i.

Regulatory constraints

• Risk-weighted Capital Ratio:

$$CAP^{i}(A, E) := rac{E^{i}}{
ho^{ op}A^{i}} \geq REG_{CAP}.$$

Regulatory constraints

• Risk-weighted Capital Ratio:

$$CAP^{i}(A, E) := \frac{E^{i}}{\rho^{\top}A^{i}} \ge REG_{CAP}.$$

• Leverage Ratio:

$$LEV^{i}(A, C, E) := \frac{E^{i}}{\mathbf{1}^{\top}A^{i} + \mathbf{1}^{\top}C^{i}} \ge REG_{LEV},$$

Regulatory constraints

• Risk-weighted Capital Ratio:

$$CAP^{i}(A, E) := \frac{E^{i}}{\rho^{\top}A^{i}} \ge REG_{CAP}.$$

• Leverage Ratio:

$$LEV^{i}(A, C, E) := \frac{E^{i}}{\mathbf{1}^{\top}A^{i} + \mathbf{1}^{\top}C^{i}} \ge REG_{LEV},$$

• Liquidity Coverage Ratio:

$$LCR^{i}(A, C, L) := \frac{\lambda^{\top}M^{i} + \mathbf{1}^{\top}C^{i}}{\omega_{out}^{\top}L^{i} - \omega_{in}^{\top}A^{i}} \geq REG_{LCR}.$$

Model	Data	Results	Conclusions	Appendix

Shocks

We consider three type of shocks:

- Asset shock (ϵ_A): $A_0^{i,k} = A^{i,k}(1 \epsilon_A^k)$. (k = 1...314)
- **2** Funding shock (ϵ_L) : $L_0^{i,k} = L^{i,k}(1 \epsilon_L^k)$. (k = 1..12)
- **3** Combined asset and funding shock.

Model	Data	Results	Conclusions	Appendix

Shocks

We consider three type of shocks:

- Asset shock (ϵ_A): $A_0^{i,k} = A^{i,k}(1 \epsilon_A^k)$. (k = 1...314)
- **2** Funding shock (ϵ_L) : $L_0^{i,k} = L^{i,k}(1 \epsilon_L^k)$. (k = 1..12)

3 Combined asset and funding shock.

$$E_0^i = (E^i - \epsilon_A^\top A^i)^+.$$

$$C_0^i = (C^i - \epsilon_L^\top L^i)^+.$$

Introduction	Model	Data	Results	Conclusions	Appendix

Bank deleveraging

Figure: Shrinking a bank's balance sheet

Model	Data	Results	Conclusions	Appendix

Price evolution under fire sales

$$P_{t+1}^{k} = P_{t}^{k} \left(1 - \delta_{k}^{-1} \sum_{i=1}^{N} S_{t}^{i,k} \right),$$

	Model	Data	Results	Conclusions	Appendix

Price evolution under fire sales

$$P_{t+1}^{k} = P_{t}^{k} \left(1 - \delta_{k}^{-1} \sum_{i=1}^{N} S_{t}^{i,k} \right),$$

Two forms of loss:

• Mark-to-market losses

Introduction	Model	Data	Results	Conclusions	Appendix

Price evolution under fire sales

$$P_{t+1}^{k} = P_{t}^{k} \left(1 - \delta_{k}^{-1} \sum_{i=1}^{N} S_{t}^{i,k} \right),$$

Two forms of loss:

Mark-to-market losses

• Implementation shortfall

$$\frac{1}{2}\sum_{k=1}^{K} S_t^{i,k} \sum_{j=1}^{N} \delta_k^{-1} S_t^{j,k}.$$

$$\min_{\mathbf{S}^{i},\mathbf{R}^{i}}(M^{i}-\frac{1}{2}S^{i})^{\top}(\frac{S^{i}}{\delta}),$$

subject to the constraints

 $CAP^{i}(A, E; \mathbf{S}) \geq REG_{CAP}$ $LEV^{i}(A, C, E; \mathbf{S}, \mathbf{R}) \geq REG_{LEV}$ $LCR^{i}(A, C, L; \mathbf{S}, \mathbf{R}) \geq REG_{LCR}$ $CASH^{i}(A, C; \mathbf{S}, \mathbf{R}) \geq 0.$

subject to the constraints

 $CAP^{i}(A, E; \mathbf{S}) \geq REG_{CAP}$ $LEV^{i}(A, C, E; \mathbf{S}, \mathbf{R}) \geq REG_{LEV}$ $LCR^{i}(A, C, L; \mathbf{S}, \mathbf{R}) \geq REG_{LCR}$ $CASH^{i}(A, C; \mathbf{S}, \mathbf{R}) \geq 0.$

Note: banks only internalise the effects of their own sales, and not the spillover effects of sales by other banks.

Calibration

- Balance sheet data taken from regulatory returns (COREP and FINREP) and Bank of England stress test data.
- **Regulatory weights** based on Basel guidance, European legislation and firms' annual statements.
- **Regulatory ratios & constraints** taken from regulatory returns.
- Market depths based on national authorities' published statistics on average trading volumes and S&P price indices for government bonds, and BoAML prices and oustanding volumes for corporate bonds.

	Model	Data	Results	Conclusions	Appendix
-					

Stress scenarios

We consider three scenarios:

- Asset shock (ϵ_A) : Bank of England 2017 Stress scenario and shocks of increased intensity.
- **2** Funding shock (ϵ_L) : Depositor run (20%, 40% and 60% deposit outflows).
- Combined asset and funding shock: Bank of England 2017 Stress scenario and 20% deposits outflows.

Asset shock

- Risk-weighted capital requirements tend to be more tightly binding than leverage constraints.
- Banks constrained by risk-weighted capital constraints sell on average more illiquid assets, and in larger amounts, than when constrained by the leverage ratio.
- The size of unexpected losses, which are not internalized by banks, can be as important as the size of expected losses.

Asset sales: leverage ratio only

Asset sales: capital ratio only

Asset sales: all constraints

Fire-sale losses: decomposition

Funding shock: deposit outflows

- Banks prefer to use cash and sell highly liquid assets first to minimise losses.
- However, as the shock becomes larger, banks are forced to sell less liquid assets.
- When banks defend their LCRs to keep them above 100%, they need to sell less liquid assets in larger amounts.
- Hence fire-sale losses are significantly larger relative to the case when banks do not defend their LCRs.

	Model	Data	Results	Conclusions	Appendix
Funding shock					

Asset sales

	Model	Data	Results	Conclusions	Appendix
Funding shock					
, i i i i i i i i i i i i i i i i i i i					

	Model	Data	Results	Conclusions	Appendix
Funding shock					

Fire-sale losses: decomposition

	Model	Data	Results	Conclusions	Appendix
Asset and Funding shoc	:ks				

Asset and Funding shocks

Conclusions

- Both risk-weighted capital and liquidity constraints can become binding and generate significant fire sales losses, by incentivising sales of larger amounts of less liquid assets.
- Models that only account for a leverage constraint might then under-estimate fire sale losses.

Conclusions

- Both risk-weighted capital and liquidity constraints can become binding and generate significant fire sales losses, by incentivising sales of larger amounts of less liquid assets.
- Models that only account for a leverage constraint might then under-estimate fire sale losses.
- Unexpected fire sales losses, e.g. losses due to deleveraging by other banks, can be larger than banks' expected losses from their own sales.
- Relaxing banks' regulatory constraints during stress may be a possible mitigating action to avoid fire sales. For example, allowing banks to draw down their LCR.

	Model	Data	Results	Conclusions	Appendix
Next step	os				

- Run more rounds of fire sales.
- Explore solvency-liquidity nexus by running asset and funding shocks (both at the same time and sequentially).
- Sensitivity analysis: market depths, price function, targeting vs threshold.
- Constraints: UK leverage framework, LCR with limits to reserves usability.

Model	Data	Results	Conclusions	Appendix

Thank you

Acharya, V. V. and Merrouche, O. (2012). Precautionary hoarding of liquidity and interbank markets: Evidence from the subprime crisis*. <u>Review of Finance</u>, pages 107–160.

Bank of England (2017).

Stress testing the uk banking system:2017 results.

Bardoscia, M., Barucca, P., Brinley-Codd, A., and Hill, J. (2017).
 The decline of solvency contagion risk.
 Bank of England Staff Working Paper No.662.

Model	Data	Results	Conclusions	Appendix
Braouezec, Y. a Risk-based capit stress scenario. Review of Finan	nd Wagalath al requiremen ce, page rfw(, L. (2016). nts and opti 067.	imal liquidation in	ı a
Calimani, S., Ha Simulating fire-s Technical report	ŀłaj, G., Żoch ales in a ban , European S	owski, D., e king and sh systemic Ris	et al. (2017). adow banking sys k Board.	tem.
Cecchetti, S. an What binds? int regulations.	d Kashyap, A eractions bet	A. (2016). zween bank	capital and liquid	ity
Cont, R. and Sc Fire sales, indire Norges Bank We	haanning, E. ct contagion orking Paper.	(2017). and system	ic stress testing.	

- 1		
_ 1		
- 1		
_ 1		
_ 1		

Dees, S. and Henry, J. (2017).

Stress-test analytics for macroprudential purposes: Introducing stamp€. SATELLITE MODELS, page 13.

Duarte, F. and Eisenbach, T. M. (2013).
 Fire sale spillovers and systemic risk.
 Federal Reserve Bank of New York Staff Report, 645.

Fique, J. (2017). The MacroFinancial Risk Assessment Framework (MFRAF), Version 2.0. Bank of Canada.

Model	Data	Results	Conclusions	Appendix

Gorton, G. and Metrick, A. (2012). Securitized banking and the run on repo. Journal of Financial Economics, 104(3):425 – 451. Market Institutions, Financial Market Risks and Financial

Crisis.

Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks.

Journal of Financial Economics, 115(3):471 – 485.

Hellwig, M. F. (2009).

Systemic Risk in the Financial Sector: An Analysis of the Subprime-Mortgage Financial Crisis. De Economist, 157(2):129–207.

Obizhaeva, A. A. (2012).

Liquidity estimates and selection bias. Working Paper.

Pierret, D. (2015).

Systemic risk and the solvency-liquidity nexus of banks. International Journal of Central Banking, 11(3):193–227.

Puhr, C. and Schmitz, S. W. (2014).
 A view from the top: The interaction between solvency and liquidity stress.
 Journal of risk management in institutions, 7(1):38–51.