An Immune System for Cyberspace as Deterrence

- 1. Conventional forms of deterrence are unsatisfactory
 - a. By-punishment: problematic and risky
 - b. By-denial: if denial is good enough to deter, why bother deterring?
- 2. A third form of deterrence threatens to remove the tools of hackers
 - a. Which matters because hackers increasingly count reusing cyber tools
 - b. If these tools cannot be used often before being rendered obsolete:
 - i. The cost of hacking rises
 - ii. The ability to hack a target of opportunity declines.
 - iii. Mass attacks start to edge off the table as being too hard to complete before detection leads to roll-back
- 3. A global surveillance system would have two components:
 - a. Distributed sensors designed to find indications of APT attack
 - b. Global feedback on signatures of tools
 - i. "Tool" is defined to include a spectrum from signatures to social engineering tricks, IP addresses, malware attributes (e.g., that frustrate detection), and novel attack vectors, to zero-day vulnerabilities
 - ii. Tools range in the ease with which they can be altered from case to case.
 - c. Many issues have yet to be worked out: potential research agenda
- 4. Where to put the sensors
 - a. On the surface? Sees the exploit but may miss most zero-days, misses attacks targeted at named individuals, may see too much that would not have gotten through anyhow.
 - b. Sub-surface?
 - i. Not the best place to see the zero-day that penetrates outward-facing systems.
 - ii. May still see exploits that go from edge to core compromise
 - iii. Will only see attacks that breach perimeter
 - c. ISPs might host sensors mounted on cloud-based simulated targets
 - i. Perhaps a mix of fully-patched and not-fully-patched systems the latter to find the special exploits that work only after initial penetration
 - d. Sensor should be an otherwise quiet machine (or at least one that can distinguish expected from unexpected inputs); may need external polling of files/memory for change detection.
 - e. How can the work of extracting characteristics of tools from anomalies be scaled? What about from tool characteristics to signatures?
 - f. What detection can be engineered against non-malware attacks?
 - g. How would hackers try to game the system (both false-positive & false-negative)?
- 5. Policy considerations
 - a. What about limiting the distribution of indicators to those willing to host sensors?
 - b. How is success advertised for deterrence purposes?
 - c. Need to address PII, transparency concerns.
 - d. How to bring networks of friendly countries into the system
 - e. Can sensors play roles as IDS for those without IDS systems?
 - f. How to keep the *good cooperative* cybersecurity folks happy and making money